
MLM 2007 Marginal vs RE models, Ordinal Responses (and other musings...)

Michael Griswold
Guest Lecture

Discussion Outline

- MLM review: Goals & Concepts
- Marginal & Random-Effect Models:
 - □ Logistic: PA & SS effects
 - □ Probit: PA & SS effects
 - ☐ Example: Crossover data (alcohol use)
- Ordinal Models
 - □ EDA
 - □ Extension of logistic regression (P.O. model)
 - □ Example: Schiz data (psychiatric drugs)

Key Components of Multi-level Models

- Specification of predictor variables from multiple levels (fixed effects)
 - □ Variables to include
 - □ Key interactions
- Specification of correlation among responses from same clusters
 - □ Marginal (GEE)
 - □ Random (GLMM)
 - □ Transitional (Time-Series)
- Choices must be driven by scientific understanding, the research question and empirical evidence.

Digression on Statistical Models

- A statistical model is an approximation to reality
- There is not a "correct" model;
 - □ (forget the holy grail)
- A model is a tool for asking a scientific question;
 - □ (screw-driver vs. sludge-hammer)
- Useful models often combine the data with prior information to address the question of interest.
- Many models are better than one.

Multi-level Shmulti-level

- Multi-level analyses of social/behavioral phenomena: an important idea
- Multi-level models involve predictors from multiple-levels and their interactions
- They must account for associations among observations within clusters (levels) to make efficient and valid inferences.

Regression with Correlated Data

Must take account of correlation to:

- Obtain valid inferences
 - standard errors
 - confidence intervals
 - posteriors
- Make efficient inferences

Logistic Regression Example: Cross-over trial

	Group	(1,1)	(0,1)	(1,0)	(0,0)	Total	1	2
•	AB	22	0	6	6	34	28	22
	BA	18	4	2	9	33	20	22

- Response: 1-normal; 0- alcohol dependence
- Predictors: period (x₁); Placebo group (x₂)
- Two observations per person (cluster)
- Parameter of interest: log odds ratio of dependence: placebo vs treatment

Mean Model: $log{odds(AD)} = \beta_0 + \beta_1 Period + \beta_2 Pl$

Marginal Models

- Focus is on the "mean model": E(Y|X)
- Group comparisons are of main interest
 - □ Treatment vs non-treatment
 - □ Exposure vs non-exposure
 - □ Demographic comparisons
- Within-cluster associations are accounted for to correct standard errors, but are not of main interest.

Marginal Model Interpretations

■ log{ odds(AlcDep) } = $\beta_0 + \beta_1$ Period + β_2 pl = 0.67 + (-0.30)Period + (0.57)pl

TRT Effect: (placebo vs. trt)

$$OR = exp(0.57) = 1.77, 95\% CI (1.12, 2.80)$$

Risk of Alcohol Dependence is almost twice as high on placebo, regardless of, (adjusting for), time period

WHY?

Since: $log{odds(AlcDep|Period, pl)} = \beta_0 + \beta_1 Period + \beta_2$

And: $log{odds(AlcDep|Period, trt)} = \beta_0 + \beta_1 Period$

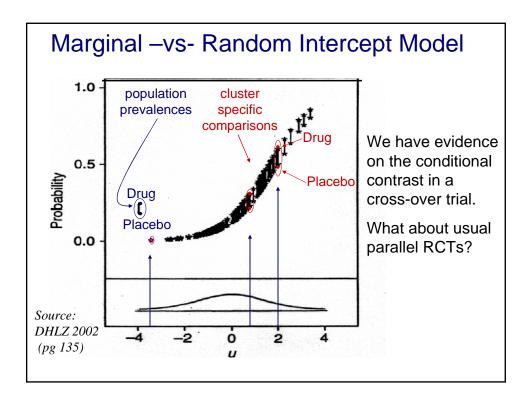
$$\Delta \log - Odds = \beta_2$$

$$\longrightarrow$$
 OR = $\exp(\beta_2)$

Random Effects Models

- Conditional on unobserved latent variables or "random effects"
 - □ Responses (Alcohol use) within a person over time are usually related, but the association is not the same for everyone (heterogeneity)
 - □ Alcohol use within a family is related because family members share an unobserved "family effect": common genes, diets, family culture and other unmeasured factors
 - □ Repeated observations within a neighborhood are correlated because neighbors share: common traditions, access to services, stress levels,...

Random Effects Model Interpretations


WHY?

Since: $log{odds(AlcDep_i|Period, pl, b_i)} = \beta_0 + \beta_1 Period + \beta_2 + b_i$ And: $log{odds(AlcDep|Period, trt, b_i)} = \beta_0 + \beta_1 Period + b_i$

$$\Delta \log - Odds = \beta_2$$

OR = $\exp(\beta_2)$

- In order to make comparisons we must keep the subject-specific latent effect (b_i) the same.
- In a Cross-Over trial we have outcome data for each subject on both placebo & treatment
- In other study designs we may not.

Marginal vs. Random Effects Models

■ For linear models, regression coefficients in random effects models and marginal models are identical:

average of linear function = linear function of average

- For non-linear models, (logistic, log-linear,...) coefficients have different meanings/values, and address different questions
 - Marginal models -> population-average parameters
 - Random effects models -> cluster-specific parameters

Marginal -vs- Random Intercept Models; Cross-over Example

		Model	
Variable	Ordinary	Marginal (GEE)	Random-
	Logistic	Logistic	Effect Logistic
	Regression	Regression	Regression
Intercept	0.66	0.67	2.2
	(0.32)	(0.29)	(1.0)
Period	-0.27	-0.30	-1.0
	(0.38)	(0.23)	(0.84)
Treatment	0.56	0.57	1.8
	(0.38)	(0.23)	(0.93)
Log OR	0.0	3.56	5.0
(assoc.)		(0.81)	(2.3)

Comparison of Marginal and Random Effect Logistic Regressions

- Regression coefficients in the random effects model are roughly 3.3 times as large
 - □ Marginal: population odds (prevalence with/prevalence without) of AlcDep is exp(.57) = 1.8 greater for placebo than on active drug; population-average parameter
 - □ Random Effects: a person's odds of AlcDep is exp(1.8)= 6.0 times greater on placebo than on active drug;

cluster-specific, here person-specific, parameter

Which model is better? They ask different questions.

Relationship between Marginal and RE models

We can obtain marginal probabilities from the individual level probabilities by integrating out the random effects

Marginalized Multilevel Models!

<u>Probit</u> Regression Example: Cross-over trial

- Response: 1-normal; 0- alcohol dependence
- Predictors:
 - \square period (x_1) ;
 - \square Placebo group (x₂)
- Two observations per person (cluster)
- Parameter of interest: log odds ratio of dependence: treatment vs placebo

Mean Model: $\Phi^{-1}\{Pr(AD=1)\} = \beta_0 + \beta_1 period + \beta_2 Pl$

Marginal -vs- Random Intercept Models; Cross-over Probit Example

		Model	
Variable	Ordinary	Marginal (GEE)	Random-
	Probit	Probit	Effect Probit
	Regression	Regression	Regression
Intercept	0.61	0.60	1.38
	(0.38)	(0.29)	(0.65)
Period	-0.18	-0.19	-0.45
	(0.23)	(0.14)	(0.35)
Treatment	0.29	0.34	0.79
	(0.23)	(0.14)	(0.37)
Log tau	0.0	"nuisance"	0.67
(assoc.)			(0.18)

$$\begin{split} P \Big(y_{ij} &= 1 \, | \, x \Big) & \text{Normal density} \\ &= \int P \Big(y_{ij} &= 1 \, | \, x, \varsigma_i \Big) \! \phi(\varsigma_i; 0, \tau^2) d\varsigma_i \\ &= \int \! \Phi(x\beta + \varsigma_i) \phi(\varsigma_i; 0, \tau^2) d\varsigma_i \\ &= \Phi \Bigg(\frac{x\beta}{\sqrt{1 + \tau^2}} \Bigg) & \text{Closed Form Solution!} \end{split}$$

Marginal -vs- Random Intercept Models; Cross-over Probit Example

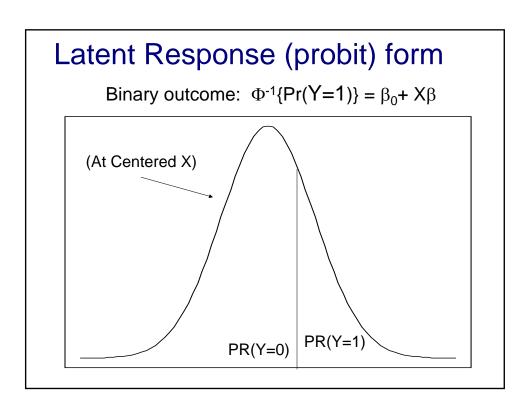
		Model		
Variable	Ordinary	Marginal (GEE)	Random-	MMM
	Probit	Probit	Effect Probit	β^{RE}
	Regression	Regression	Regression	$\sqrt{1+\tau^2}$
Intercept	0.61	0.60	1.38	0.63
	(0.38)	(0.29)	(0.65)	
Period	-0.18	-0.19	-0.45	-0.20
	(0.23)	(0.14)	(0.35)	
Treatment	0.29	0.34	0.79	0.35
	(0.23)	(0.14)	(0.37)	
Log tau	0.0	"nuisance"	0.67	
(assoc.)			(0.18)	

Construct Contrasts of Interest

- RE model:
 - $\Box \Phi^{-1}\{Pr(AD=1)\} = \beta_0 + \beta_1 period + \beta_2 PI + \varsigma_i$
 - with: $\varsigma_i \sim N(0, \tau^2)$
 - $\Box \Pr(AD=1) = \Phi\{(\beta_0 + \beta_1 \text{period} + \beta_2 \text{PI}) / \sqrt{(1+\tau^2)}\}$
- Marginal RR(Pl vs trt, period 1)

$$= \Phi\{(\beta_0 + \beta_2) / \sqrt{(1+\tau^2)}\} / \Phi\{\beta_0 / \sqrt{(1+\tau^2)}\}$$

■ Marginal OR, etc...


Key Points

- "Multi-level" Models:
 - ☐ Have covariates from many levels and their interactions
 - □ Acknowledge correlation among observations from within a level (cluster)
- Assumptions about the latent variables determine the nature of the within cluster correlations
- Information can be borrowed across clusters (levels) to improve individual estimates
- Goal: Group Comparisons => Marginal Models
- Goal: Describe Heterogeneity => RE Models

Marginalized Multilevel Models

- Allows group comparisons
- Allows description of heterogeneity
- Allows associations to be non-nuisance
- Full Likelihood (RE) model => MAR
- Best parts of all worlds

Ordinal Responses

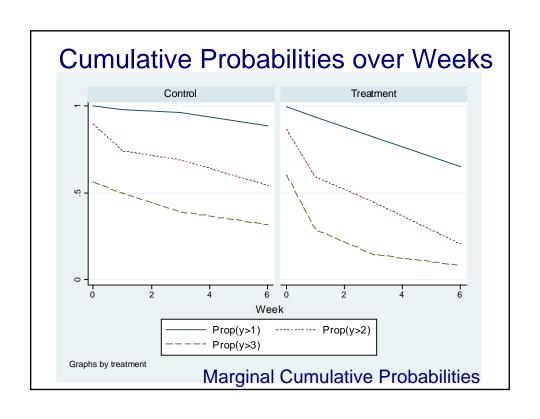
Latent Response (probit) form Ordinal outcome: $\Phi^{-1}\{Pr(Y>s)\} = \alpha_s + X\beta$ $PR(Y>1) = \Phi\{\alpha_1\}$ $PR(Y>2) = \Phi\{\alpha_2\}$ PR(Y=1) = ? PR(Y=2) = ? PR(Y=3) = ?

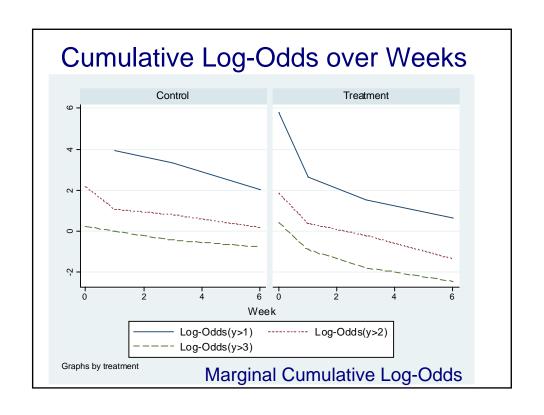
Cumulative Response Models

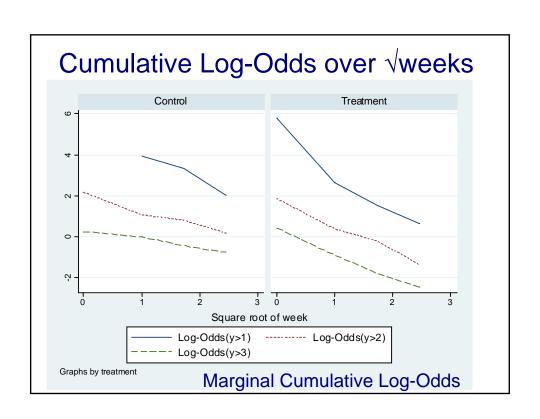
- Logistic regression: 2-categories (0/1)
 - $\Box \log\{ \Pr(Y=1) / [1-\Pr(Y=1)] \} = \beta_0 + X\beta$
 - $\square \log\{ \Pr(Y=1) / \Pr(Y=0) \} = \beta_0 + X\beta$
 - $\Box \log\{ \Pr(Y>0) / \Pr(Y\leq 0) \} = \beta_0 + X\beta$
- P.O. regression: S-categories (1,2,...,S)
 - $\Box \log\{ \Pr(Y>1) / \Pr(Y\leq 1) \} = \alpha_1 + X\beta$
 - $\square \log\{ \Pr(Y>2) / \Pr(Y\leq 2) \} = \alpha_2 + X\beta$
 - $\square \log\{ \Pr(Y>s) / \Pr(Y\leq s) \} = \alpha_s + X\beta$
 - $\square \log\{ \Pr(Y>s) / [1-\Pr(Y>s)] \} = \alpha_s + X\beta$
- Note: Gllamm uses $-k_s$ for α_s

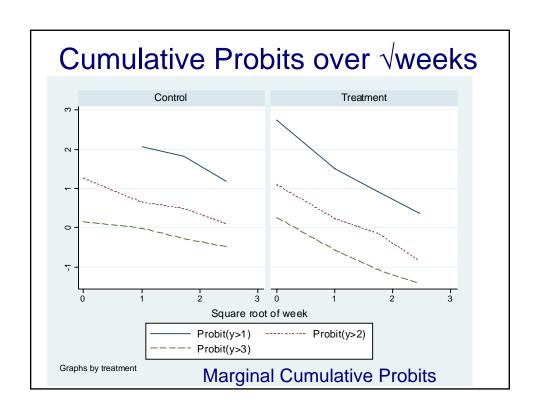
Ordered Responses

- Probit: $\Phi^{-1}\{Pr(Y>s)\} = \alpha_s + X\beta$
- PO: $log{odds(Y>s)} = \alpha_s + X\beta$
- s = 1..(S-1) & check manuals for $-\alpha_s$, $-X\beta$
- Interpretations: β represents the assoc of a 1-unit increase in X with a change in logodds of being in ANY cumulative cat.
- Ex: 3-cat PO: $log{odds(Y>s)} = \alpha_s + X\beta$, s=1,2
 - \square logodds(Y>1) = α_1 + X β

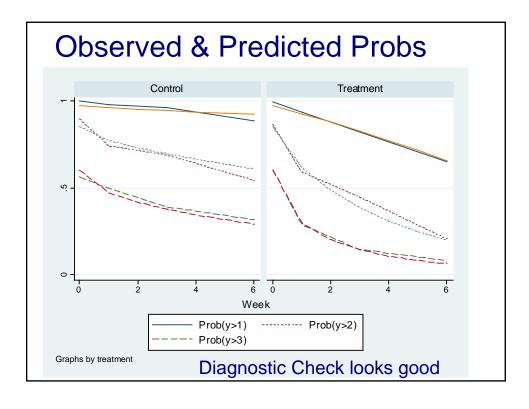

□ logodds(Y>2) = α_2 + Xβ Strong
Assumption


Schiz Data:


Schizophrenia Collaborative Study (NIMH)


- Antipsychotic Drugs & Schiz. Severity
- 437 patients
 - □ Placebo (0) & treatment (1)
 - \Box Trt = (Chlorpromazine, Fluphenazine, or Thioridazine)
- 7 potential visits for each patient (0..6)
- Outcome: IMPS item 79
 - ☐ Inpatient Multidimensional Psychiatric Scale
 - □ 1=Normal, 2=mildly ill, 3=markedly ill, 4=severely
- Q1) How well does trt work vs Placebo?
- Q2) How variable are patients' responses

Schiz Data cont: Data Patterns								
<u>Freq</u>	. Percent Cum. Pattern	<u>)</u>						
308	70.48 70.48 11.11							
41	9.38 79.86 11.1			trea	atment	t		
37	8.47 88.33 11	wee	k	0	1	Total		
8	•		0			434		
8	·		•			426		
	'				9			
6	1.37 93.36 11.1.1.		3	87	287	374		
5	1.14 94.51 111		4	2	9	11		
5	1.14 95.65 11.11		5	2	7	9		
3	0.69 96.34 .1.11		6	70	265	335		
<u>16</u>	3.66 100.0 (other patte	rns)						
437	100.00 XXXXXXX							


()rdi	nary F	0.0 m	nod	اء دام	tata		
Orai	ilaiy i	.0.11	IOG	CI. O (iata		
ologit imr	oso weeksgr	t treatme	nt int	eract.			
JIOGIC IMP	_	robust c		-			
	OI.	TODUSC C.	Luscer	(Iu)			
dered logist	tic regression	n		Numbe	er of obs	. =	16
	5	-			chi2(3)		
					> chi2		
g pseudolik	elihood = -18	78.0969		Pseud	lo R2	=	0.11
			1				
		(Sto	i. Err.	adjusted	for 437	clust	ers in i
T	 I	Robust					
impso	Odds Ratio		z	P> z	[95%	Conf.	Interva
	+ .5847056	0501707			4704		
_	1 .9993959			0.000			
	4719089			0.000			
Inceract	+	.0300133	-0.24		.3/2/		.55/43
1	-3.807279	.1956796			-4.190	804	-3.4237
/cut1	3.00,2,3						
	-1.760167	.1811041			-2.115	125	-1.405

Ordinary PO interpretations

- Effects are the same across cumulative cats
- No effect at baseline

Ordinary PO interpretations

- Effects are the same across cumulative cats
- 72% Reduction in "risk" (odds) at wk1, trt vs pl

Ordered Responses w/ Ran Ints

- Probit: $\Phi^{-1}\{\Pr(Y>s)\} = \alpha_s + X\beta + u_i$
- PO: $log{odds(Y>s)} = \alpha_s + X\beta + u_i$
- s = 1..(S-1) & check manuals for $-\alpha_s$, $-X\beta$
- Interpretations: β represents the assoc of a 1-unit increase in X with a change in logodds of being in ANY cumulative cat. for a single patient.
- Ex: 3-cat PO: $log{odds(Y>s)} = \alpha_s + X\beta + u_i$, s=1,2
 - \square logodds(Y>1) = α_1 + X β + u_i
 - \square logodds(Y>2) = α_2 + X β + u_i

Strong Assumption

Ran Int P.O. model: gllamm

gllamm impso weeksqrt treatment interact,
 i(id) link(ologit) adapt eform

impso	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
impso]			
weeksqrt	.4649525	.0608031	-5.86	0.000	.3598277	.6007899
treatment	.9439404	.2962807	-0.18	0.854	.5102375	1.746291
interact	.2993646	.0457031	-7.90	0.000	.2219474	.4037855
_cut11	-5.858453	.331792	-17.66	0.000	-6.508753	-5.208153
_cut12	-2.825669	.2900513	-9.74	0.000	-3.394159	-2.257179
_cut13	7077072	.2750904	-2.57	0.010	-1.246875	1685399
Variances and	d covariances	of random e	ffects			
***level 2 (id var(1): 3.	1) .7733416 (.464	196878)				

Ran. Int. (SS) PO interpretations

Model: $log{odds(Y>s)} = \alpha_s + \beta_1 swk + \beta_2 trt + \beta_3 swk^* trt + u_i$

- $\square \log\{\text{odds}(Y>1 \mid \text{wk=0, trt})\} = \alpha_1 + \beta_2 + u_i$

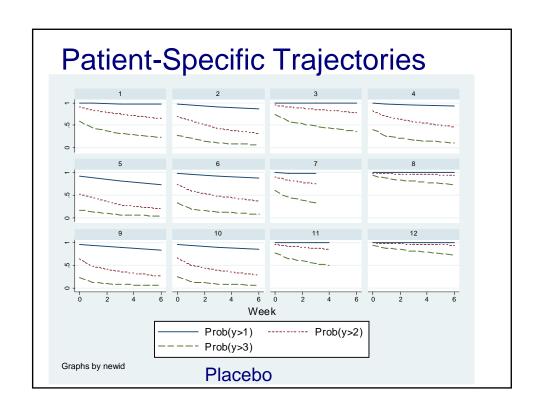
 $\exp(\beta_2) = 0.94$

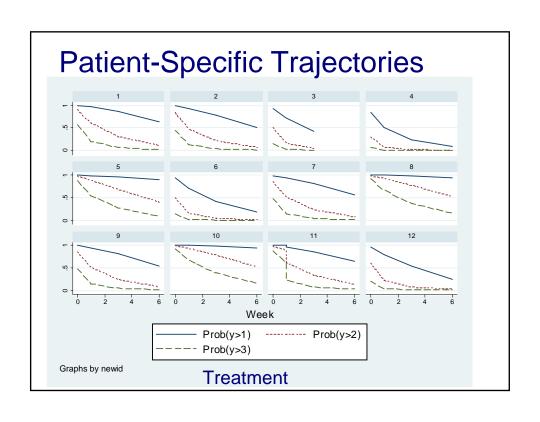
- $\square \log\{\text{odds}(Y>2 \mid \text{wk}=0, \text{trt})\} = \alpha_2 + \beta_2$
- $\square \log\{\text{odds}(Y>2 \mid \text{wk}=0, \text{PI})\} = \alpha_2$

 $\exp(\beta_2) = 0.94$

At baseline, no effect comparing a single patient on trt, to that same patient off trt??

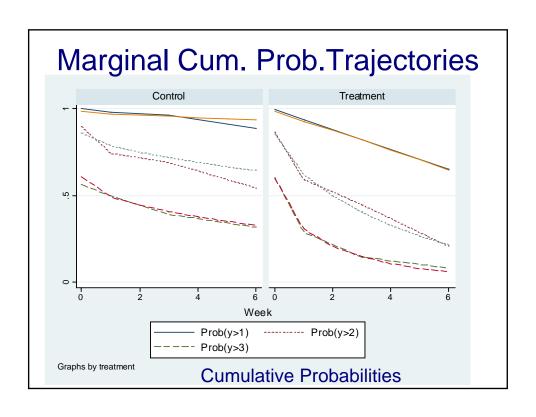
Ran. Int. (SS) PO interpretations

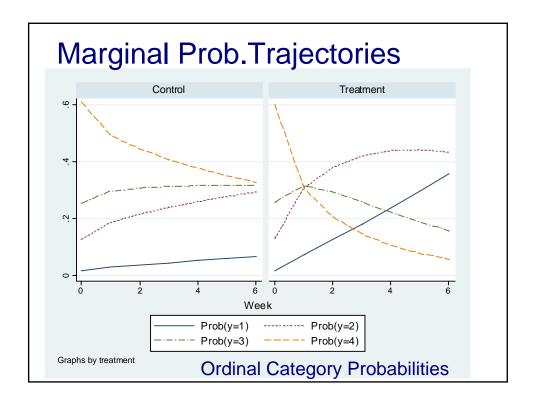

Model: log{odds(Y>s)} = α_s + β_1 swk+ β_2 trt+ β_3 swk*trt+ u_i \square log{odds(Y>1 | wk=1, trt)} = α_1 + β_1 + β_2 + β_3 + u_i \square log{odds(Y>1 | wk=1, PI)} = α_1 + β_1 + u_i = exp(β_2 + β_3)= 0.14


Similar at week 1, etc. The SS trt effect compares a single patient on trt, to that same patient off trt but we have not observed any actual data on this effect. This is a "causal extrapolation"

How Heterogeneous is the data?

Model: log{odds(Y>s)} = $\alpha_s + \beta_1 swk + \beta_2 trt + \beta_3 swk^* trt + u_i$


- If a patient is on trt (or off), how variable is their specific outcome trajectory?
- Estimate of Ran Int variance: 3.77 (0.46)
- Huge!
- Can we visualize?
- Sure, use Empirical Bayes estimates of u_i



Can we Marginalize the PO model?

- Of course, the marginalized version integrates the random effects out over their assumed distribution
- no more causal extrapolation
- Currently not implemented in Stata, but see "A User Friendly Guide to Link-Probit Models" – Caffo, Griswold; TAS 2006
- We can use Gllamm's post-estimation prediction to compute the marginal probabilities for visualization however...

Relaxing the PO assumption

- PO: $log{odds(Y>s)} = \alpha_s + X\beta$
- Non-PO: $log{odds(Y>s)} = \alpha_s + X\beta_s$
- s = 1..(S-1) & check manuals for $-\alpha_s$, $-X\beta_s$
- Interpretations: β_s represents the assoc of a 1-unit increase in X with a change in logodds of being in cumulative cat. "s"
- Ex: 3-cat PO: $log{odds(Y>s)} = \alpha_s + X\beta_s$, s=1,2
 - \square logodds(Y>1) = α_1 + $X\beta_{11}$
 - \square logodds(Y>2) = α_2 + $X\beta_{21}$

Relaxed Assumption

non-P.O. model: gologit gologit impso weeksqrt treatment interact, cluster(id) robust (Std. Err. adjusted for 437 clusters in id)						
(Std. Err. ad	ljusted for 43	37 clusters : Robust	in id) l			
impso	Odds Ratio		z	P> z	[95% Conf	. Interval]
+ mleq1						
- '	.2041182	.0937231	-3.46	0.001	.0829934	.5020189
treatment		.1833936	-1.68	0.093	.0241621	
interact	1.054759	.5020053	0.11	0.911	.4149823	2.680876
+ mleq2						
weeksgrt	.4847473	.0609446	-5.76	0.000	.3788772	.6202008
treatment	.7877922	.2234486	-0.84	0.400	.4518327	1.373554
interact	.5892814	.0865812	-3.60	0.000	.4418333	.7859357
+ mlea3						
	.66977	.069234	-3.88	0.000	.5469368	.8201896
		.2399695	0.26	0.793	.6810892	
interact	.441081	.0588683	-6.13	0.000	.3395579	.5729583
cons1 5.	986731 986	50904 6 (7 0 00	00 4.	05403 7	919433
	996487 .250			00 1.5		487404
	.30472 .199				359997 .6	
_ · · · · · · · · · · · · · · · · · · ·						

Com	npare v	M/DC) n	ahar	اہ دا	α	iŧ
COH	ipaie i	W/ F.C	J. 11	IUUE	ı. Ui	ug	IL
orogic imp	oso weeksqr			=			
	or	robust c	ıuster	(1d)			
dered logic	tic regression			Numbe	r of obs	. =	16
dered logis	cic regression	.1			chi2(3)		440.
					> chi2		0.00
g pseudolike	elihood = -18	78.0969		Pseud	lo R2	=	0.11
			1				
		(Sto	d. Err.	adjusted	for 437	clust	ers in i
	 I	Robust					
impso	Odds Ratio	Std. Err.	z	P> z	[95%	Conf.	Interva
weeksgrt	.5847056	.0591797	-5.30	0.000	.4794	958	.71300
treatment	.9993959	.2042595	-0.00	0.998	.6695	244	1.4917
interact	.4719089	.0568135	-6.24	0.000	.3727	189	.59749
/cut1	+ -3.807279	.1956796	†		-4.190	804	-3.4237
/ Сист	•					105	1 405
/cut2	-1.760167	.1811041			-2.115	125	-1.405

Relaxing the PO assumption

- PO: $log{odds(Y>s)} = \alpha_s + X\beta + u_i$
- Non-PO: $log{odds(Y>s)} = \alpha_s + X\beta_s + u_i$
- s = 1..(S-1) & check manuals for $-\alpha_s$, $-X\beta_s$
- Interpretations: β_s represents the assoc of a 1-unit increase in X with a change in logodds of being in cumulative cat. "s" for a single patient.
- Ex: 3-cat PO: $log{odds(Y>s)} = \alpha_s + X\beta + u_i$, s=1,2
 - \square logodds(Y>1) = α_1 + $X\beta_1$ + u_i
 - \square logodds(Y>2) = α_2 + X β_2 + u_i

Strong Assumption

Ran. Int. (SS) non-PO interpretations

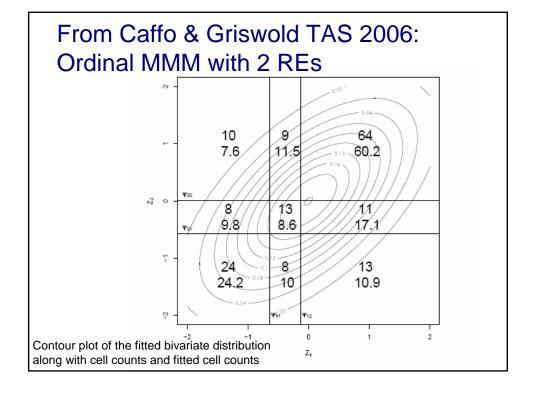
 $log{odds(Y>s)} = \alpha_s + \beta_{s1} swk + \beta_{s2} trt + \beta_{s3} swk * trt + u_i$

- $\Box \log\{\text{odds}(Y>1 \mid \text{wk=0}, \text{trt})\} = \alpha_1 + \beta_{12} + u_i$

 $\exp(\beta_{12}) = ??$

- $\square \log\{\text{odds}(Y>2 \mid \text{wk=0, trt})\} = \alpha_2 + \beta_{22}$
- $\square \log\{\text{odds}(Y>2 \mid \text{wk}=0, \text{PI})\} = \alpha_2$

 $\exp(\beta_{22}) = ??$


■ Gllamm still running...

Schiz Summary

- Under a common trt effect, general 72% decrease in cumulative odds risk per unit time (sqrt week).
- Patient responses are highly variable, so the marginal responses may not fit an individual's response well.
- Could model this with MMM (probit) to handle both estimation aspects
- Potentially less change over time in lower categories
- Potentially stronger trt effects in upper categories

Ordinal MLM notes

- PO models are basically logistic regressions
 - popular
 - □ strong parallel regression assumption
 - □ Can be relaxed
- Mixed PO have SS, not PA effects (from logit)
- Other models:
 - □ Ordinal Probit
 - □ Continuation ratio model
 - Multinomial logit model
- Additional REs (random slopes, etc.)

Overall Summary: MLMs

- Powerful tools / dangerous black boxes
- "Buyer Beware"
 - □ Model Assumptions: both fixed AND random $(u_i \sim N(0, \tau^2))$
 - □ Identifiability
 - □ Model Fit: Marginalize & Check whenever possible
 - □ Report Heterogeneity as well (& meaning)
 - $\hfill \square$ MLMs require even more due-diligence than usual
- Marginal Models (~GEE)
 - $\hfill\square$ Nice PA interpretations, more robust
- RE models (~GLMM)
 - $\hfill \square$ Nice MAR, flexible assoc, full likelihood
- MMM: best of both worlds