MLM 2007
Marginal vs RE models,
Ordinal Responses
(and other musings...)

Michael Griswold
Guest Lecture

Discussion Outline

m MLM review: Goals & Concepts
m Marginal & Random-Effect Models:
Logistic: PA & SS effects
Probit: PA & SS effects
Example: Crossover data (alcohol use)
m Ordinal Models

EDA
Extension of logistic regression (P.O. model)
Example: Schiz data (psychiatric drugs)
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Multi-level Models: Review

Level: Predictor Variables Onobserved “latent”
1 siik Person’s X.p components
- S1) Income

/ Response
2 sij Family X f

Income .
Schiz

Y

sijk

Si Percent poverty y
in neighborhood

State support
of the poor

State Mental Health Laws a.s

Key Components of Multi-level Models

m Specification of predictor variables from multiple
levels (fixed effects)
Variables to include
Key interactions

m Specification of correlation among responses
from same clusters
Marginal (GEE)
Random (GLMM)
Transitional (Time-Series)
m Choices must be driven by scientific
understanding, the research question and
empirical evidence.




Digression on Statistical Models

m A statistical model is an approximation to reality
m There is not a “correct” model;

( forget the holy grail )
m A model is a tool for asking a scientific question;

( screw-driver vs. sludge-hammer )

m Useful models often combine the data with prior
information to address the question of interest.

m Many models are better than one.

Multi-level Shmulti-level

m Multi-level analyses of social/behavioral
phenomena: an important idea

m Multi-level models involve predictors from
multiple-levels and their interactions

m They must account for associations
among observations within clusters
(levels) to make efficient and valid
inferences.




Regression with Correlated Data

Must take account of correlation to:

m Obtain valid inferences
standard errors
confidence intervals
posteriors

m Make efficient inferences

Logistic Regression Example:
Cross-over trial

Group (1,1) (0,1) (1,0) (0,0) Total 1 2
AB 22 0 b 6 34 28 22
BA 18 4 2 9 33 20 22

m Response: 1-normal; O- alcohol dependence

m Predictors: period (x,); Placebo group (x,)

m Two observations per person (cluster)

m Parameter of interest: log odds ratio of
dependence: placebo VS treatment

Mean Model: log{odds(AD)} = B, + B,Period + ,PI




Marginal Models
m Focus is on the “mean model”: E(Y|X)
m Group comparisons are of main interest
Treatment vs non-treatment
EXxposure vs non-exposure
Demographic comparisons
m Within-cluster associations are accounted for
to correct standard errors, but are not of main

interest.

Marginal Model Interpretations

m |log{ odds(AlcDep) } = 3, + B,Period + B,pl

= 0.67 + (-0.30)Period + (0.57)pl
TRT Effect: (placebo vs. trt)
OR =exp(0.57) =1.77,

— Risk of Alcohol Dependence is almost twice as high
on placebo, regardless of, (adjusting for), time period

95% CI (1.12, 2.80)

WHY?
Since: log{odds(AlcDep|Period, pl)} = B, + B,Period + f3,

And: log{odds(AlcDep|Period, trt)} =B, + p,Period
Alog-Odds = B,
=  OR exp( B, )




Random Effects Models

m Conditional on unobserved latent variables or
“random effects”

Responses (Alcohol use) within a person over
time are usually related, but the association is not
the same for everyone (heterogeneity)

Alcohol use within a family is related because
family members share an unobserved “family
effect”. common genes, diets, family culture and
other unmeasured factors

Repeated observations within a neighborhood are

correlated because neighbors share: common
traditions, access to services, stress levels,...

Random Effects Model Interpretations
WHY?
Since: log{odds(AlcDep,|Period, pl, b;) )} = B, + B,Period + B, + b,
And: log{odds(AlcDep|Period, trt, b)) )} =B, + p,Period + Db,
A log-Odds = B,
=  OR exp( B,)

m In order to make comparisons we must keep the
subject-specific latent effect (b;) the same.

m In a Cross-Over trial we have outcome data for each
subject on both placebo & treatment

m |n other study designs we may not.




Marginal —vs- Random Intercept Model
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prevalences specific II
comparisons
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Marginal vs. Random Effects Models

m For linear models, regression coefficients in
random effects models and marginal models are

identical:
average of linear function = linear function of average

m For non-linear models, (logistic, log-linear,...)
coefficients have different meanings/values, and

address different questions

- Marginal models -> population-average
parameters

- Random effects models -> cluster-specific
parameters




Marginal -vs- Random Intercept Models;
Cross-over Example

Model
Variable Ordinary |Marginal (GEE)| Random-
Logistic Logistic Effect Logistic
Regression| Regression Regression

Intercept 0.66 0.67 2.2

(0.32) (0.29) (1.0)
Period -0.27 -0.30 -1.0

(0.38) (0.23) (0.84)
Treatment 0.56 0.57 1.8

(0.38) (0.23) (0.93)
Log OR 0.0 3.56 5.0
(assoc.) (0.81) (2.3)

Comparison of Marginal and Random
Effect Logistic Regressions

m Regression coefficients in the random effects
model are roughly 3.3 times as large

Marginal: population odds (prevalence
with/prevalence without) of AlcDep is exp(.57) = 1.8
greater for placebo than on active drug;

population-average parameter

Random Effects: a person’s odds of AlcDep is
exp(1.8)= 6.0 times greater on placebo than on
active drug;

cluster-specific, here person-specific, parameter

Which model is better?  They ask different questions.




Relationship between Marginal and
RE models

P(yij =1|x, Xz)

= J P(yij =1 X, X%,,6 )¢(§i;0’ z"\Z)in
T

Normal density

We can obtain marginal probabilities from the individual
level probabilities by integrating out the random effects

Marginalized Multilevel Models!

Probit Regression Example:
Cross-over trial

m Response: 1-normal; O- alcohol dependence
m Predictors:
period (X,);
Placebo group (x,)
m Two observations per person (cluster)
m Parameter of interest: log odds ratio of dependence:
treatment vs placebo

Mean Model: ®-Y{Pr(AD=1)} = B, + B,period + B,PI




Marginal -vs- Random Intercept Models;
Cross-over Probit Example

Model
Variable Ordinary |Marginal (GEE)| Random-
Probit Probit Effect Probit
Regression| Regression Regression
Intercept 0.61 0.60 1.38
(0.38) (0.29) (0.65)
Period -0.18 -0.19 -0.45
(0.23) (0.14) (0.35)
Treatment 0.29 0.34 0.79
(0.23) (0.14) (0.37)
Log tau 0.0 “nuisance” 0.67
(assoc.) (0.18)

Marginalized Probit Model
P(yij — 1| X) /Normal density
= [Ply; =11%6 J(5::0,%)dg,
= [©(xB+6)¢(s:0,7°)d,

= _— Closed Form Solution!
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Marginal -vs- Random Intercept Models;
Cross-over Probit Example

Model

Variable Ordinary |Marginal (GEE)| Random- MMM
Probit Probit Effect Probit || 8™
Regression| Regression Regression ||\1+72

Intercept 0.61 0.60 1.38 0.63
(0.38) (0.29) (0.65)

Period -0.18 -0.19 -0.45 -0.20
(0.23) (0.14) (0.35)

Treatment 0.29 0.34 0.79 0.35
(0.23) (0.14) (0.37)

Log tau 0.0 “nuisance” 0.67

(assoc.) (0.18)

Construct Contrasts of Interest

m RE model:
O-HPr(AD=1)} = B, + B,period + B,PI + ¢;

m with: g;~ N(O, )
Pr(AD=1) = ®{(B, + p,period + B,PI) / V(1+ 1%)}

m Marginal RR(PI vs trt, period 1)
= Of(Bo+ By) 1 V(1+ T2} / OfB, / V(1+ 12}

m Marginal OR, etc...

11



Key Points
m “Multi-level” Models:

Have covariates from many levels and their
interactions

Acknowledge correlation among observations
from within a level (cluster)

m Assumptions about the latent variables determine
the nature of the within cluster correlations

m Information can be borrowed across clusters
(levels) to improve individual estimates

m Goal: Group Comparisons => Marginal Models
m Goal: Describe Heterogeneity => RE Models

Marginalized Multilevel Models

m Allows group comparisons

m Allows description of heterogeneity

m Allows associations to be non-nuisance
m Full Likelihood (RE) model => MAR

m Best parts of all worlds
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Ordinal Responses

Latent Response (probit) form
Binary outcome: ®{Pr(Y=1)} = B,+ Xp

(At Centered X)

\

PR(Y=1)

PR(Y=0)
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Latent Response (probit) form

Ordinal outcome: ®XPr(Y>s)} = o, + Xp

PR(Y>1) = ®{a)

(At Centered X)
PR(Y>2) = ®{aL,)

\
PR(Y=1)="?
PR(Y=2)="?
PR(Y=3)="?

PR(Y=2)

Cumulative Response Models

m Logistic regression: 2-categories (0/1)
log{ Pr(Y=1) / [1-Pr(Y=1)] } = B, + XP
log{ Pr(Y=1) / Pr(Y=0) } = B, + XB
log{ Pr(Y>0) / Pr(Y<0) } = B, + XB
m P.O. regression: S-categories (1,2,...,S)
log{ Pr(Y>1) / Pr(Y<1) } = o, + XB
log{ Pr(Y>2) / Pr(Y<2) } = a, + XB
log{ Pr(Y>s) / Pr(Y<s) } = a, + X
log{ Pr(Y>s) / [1-Pr(Y>s)] } = a, + X
m Note: Gllamm uses —k, for o
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Ordered Responses

m Probit:  o{Pr(Y>s)} = o, + XB

m PO: log{odds(Y>s)} = o + XP

m s =1..(5-1) & check manuals for -a, -X3

m Interpretations:  represents the assoc of a 1-unit
increase in X with a change in logodds of being in
ANY cumulative cat.

s’

m Ex: 3-cat PO: log{odds(Y>s)} = o, + XB, s=1,2

logodds(Y>1) = a; + Xp Strong

logodds(Y>2) = a., + XB Assumption

Schiz Data:
Schizophrenia Collaborative Study (NIMH)
m Antipsychotic Drugs & Schiz. Severity

m 437 patients
Placebo (0) & treatment (1)

Trt = (Chlorpromazine, Fluphenazine, or Thioridazine)
m 7 potential visits for each patient (0..6)

m Outcome: IMPS item 79
Inpatient Multidimensional Psychiatric Scale

1=Normal, 2=mildly ill, 3=markedly ill, 4=severely

m Q1) How well does trt work vs Placebo?
m Q2) How variable are patients’ responses

15



Schiz Data cont: Data Patterns

Freq. Percent

Cum. | Pattern

308
41

70.48 70.48 |
9.38 79.86 |
8.47 88.33|
1.83 90.16 |
1.83 91.99 |
1.37 93.36 |
1.14 94.51 |
1.14 95.65 |

treatment
0 1 Total

11.1..1
11.1... I
11..... week |
0|
11....1 ]
111.... 2|
11.1.1. 3]
1.1..1 4|
11.11.. 5
6|

107 327 434

105 321 426
5 9 14
87 287 374
2 9 11
2 7 9
70 265 335

0.69 96.34 | .1.1..1
3.66 100.0 | (other patterns)

100.00

| XXXXXXX

Cumulative Probabilities over Weeks

Control

Treatment

~N—_

Prop(y>1) ----------- Prop(y>2)
Prop(y>3)

Graphs by treatment

Marginal Cumulative Probabilities
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Cumulative Log-Odds over Weeks

Control Treatment
@d
<
o . \
od —— — \‘\\ ------------
(\Il -

Week

Log-Odds(y>1) ---------- Log-Odds(y>2)
————— Log-Odds(y>3)

Graphs by treatment

Marginal Cumulative Log-Odds

Cumulative Log-Odds over Vweeks

Control Treatment

Square root of week

Log-Odds(y>1)  -=-=------- Log-Odds(y>2)
————— Log-Odds(y>3)

Graphs by treatment

Marginal Cumulative Log-Odds
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Cumulative Probits over Yweeks

Control Treatment

0 1 2 3 0 1 2
Square root of week

Probit(y>1)  ----------- Probit(y>2)
————— Probit(y>3)

Graphs by treatment

Marginal Cumulative Probits

Ordinary P.O. model: stata

ologit impso weeksgrt treatment interact,
or robust cluster(id)

1603
440.17
0.0000
0.1177

Interval]
.7130004
1.491793
.5974961

-3.423754
-1.40521

Ordered logistic regression Number of obs =
Wald chi2(3) =
Prob > chi2 =
Log pseudolikelihood = -1878.0969 Pseudo R2 =
(Std. Err. adjusted for 437 clusters in id)
| Robust
impso | Odds Ratio Std. Err. z P>]z| [95% ConT.
[ —— e
weeksqrt | .5847056 .0591797 -5.30 0.000 .4794958
treatment | -9993959 .2042595 -0.00 0.998 .6695244
interact | -4719089 .0568135 -6.24 0.000 .3727189
[ —— e
/cutl | -3.807279 -1956796 -4.190804
/cut2 | -1.760167 .1811041 -2.115125
/cut3 | -.4221112 -1795596 -.7740415

-.0701808
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Ordinary PO interpretations

Model: log{odds(Y>s)} = o + B,SwWk + Btrt + Byswk*trt
log{odds(Y>1 | wk=0, trt)} = o, + 3,
log{odds(Y>1 | wk=0, P)} = o,
exp(pB,)= 1.0

log{odds(Y>2 | wk=0, trt)} = o, + 3,
log{odds(Y>2 | wk=0, PI)} = a,
exp(B,)= 1.0
m Effects are the same across cumulative cats
m No effect at baseline

Ordinary PO interpretations

Model: log{odds(Y>s)} = a + B;swk + B,trt + Byswk*trt
log{odds(Y>1 | wk=1, trt)} = o, + B+ B+ Bs
log{odds(Y>1 | wk=1, P)} = o, + f3

exp(B,+P3)= 0.28

log{odds(Y>2 | wk=1, trt)} = o, + B+ B+ Bs
log{odds(Y>2 | wk=1, Pl)} = o, + B,
exp(B,+B;)=0.28
m Effects are the same across cumulative cats
m 72% Reduction in “risk” (odds) at wk1, trt vs pl
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Observed & Predicted Probs

Control Treatment

S=——_

Week

Prob(y>1) ---------- Prob(y>2)
————— Prob(y>3)

Graphs by treatment

Diagnostic Check looks good

Ordered Responses w/ Ran Ints

m Probit:  &{Pr(Y>s)} = o + XB + y;

m PO: log{odds(Y>s)} = o + XP + u;

m s =1..(S-1) & check manuals for -a., -Xp

m Interpretations: 3 represents the assoc of a 1-unit
increase in X with a change in logodds of being in
ANY cumulative cat. for a single patient.

m Ex: 3-cat PO: log{odds(Y>s)} = o + XpB + u;, s=1,2
logodds(Y>1) = a; + XB + y;

S

logodds(Y>2) = a, + XB + u; Strong
Assumption

20



Ran Int P.O. model: gllamm

gllamm impso weeksqrt treatment interact,
i(id) link(ologit) adapt eform

impso | exp(b) Std. Err z P>|z| [95% Conf. Interval]
———————— e ——————————————————————
impso |
weeksqrt | .4649525 .0608031 -5.86 0.000 .3598277 .6007899
treatment | -9439404 .2962807 -0.18 0.854 .5102375 1.746291
interact | .2993646 .0457031 -7.90 0.000 .2219474 .4037855
S A
cutll ] -5.858453 .331792 -17.66  0.000 -6.508753 -5.208153
S A
cutl2 ] -2.825669 2900513 -9.74 0.000 -3.394159 -2.257179
S A
cutl3 ] -.7077072 2750904 -2.57 0.010 -1.246875 -.1685399
ariances and covariances of random effects
*r*level 2 (id)
var(1l): 3.7733416 (.46496878)

Ran. Int. (SS) PO interpretations

Model: log{odds(Y>s)} = a +B,SWk+p,trt+Bsswk*trt+ u;
log{odds(Y>1 | wk=0, trt)} = o, + B, + u
log{odds(Y>1 | wk=0, PI)} = o, + u,

exp(p,)= 0.94

log{odds(Y>2 | wk=0, trt)} = o, + B,
log{odds(Y>2 | wk=0, PI)} = a,
exp(B,)= 0.94

m At baseline, no effect comparing a single
patient on trt, to that same patient off trt??
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Ran. Int. (SS) PO interpretations

Model: log{odds(Y>s)} = oL *+B,SWk+p,trt+Bsswk*trt+ u;
log{odds(Y>1 | wk=1, trt)} = oy + B+ Byt B3+ u;
log{odds(Y>1 | wk=1, P)} = o, + [, + U,

exp(B,+f3)=0.14

m Similar at week 1, etc. The SS trt effect
compares a single patient on trt, to that same
patient off trt but we have not observed any
actual data on this effect. This is a “causal
extrapolation”

How Heterogeneous is the data?

Model: log{odds(Y>s)} =0l +B,SWk+B,trt+Bsswk*trt+ u,

m If a patient is on trt (or off), how variable is
their specific outcome trajectory?

m Estimate of Ran Int variance: 3.77 (0.46)
m Huge!

m Can we visualize?

m Sure, use Empirical Bayes estimates of u,
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Patient-Specific Trajectories
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Patient-Specific Trajectories
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Can we Marginalize the PO model?

m Of course, the marginalized version integrates
the random effects out over their assumed
distribution

m N0 more causal extrapolation
m Currently not implemented in Stata, but see “A

User Friendly Guide to Link-Probit Models” —
Caffo, Griswold; TAS 2006

m We can use Gllamm’s post-estimation prediction
to compute the marginal probabilities for
visualization however...

Marginal Cum. Prob.Trajectories

Control Treatment
=d

Week

Prob(y>1) = ---=r--o-- Prob(y>2)
————— Prob(y>3)

Graphs by treatment

Cumulative Probabilities
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Marginal Prob.Trajectories

Control Treatment

© 4

Week
Prob(y=1) ---------- Prob(y=2)
— - Prob(y=3) Prob(y=4)

Graphs by treatment

Ordinal Category Probabilities

Relaxing the PO assumption
m PO: log{odds(Y>s)} = o + Xp
Non-PO: log{odds(Y>s)} = o, + XP;

s = 1..(S5-1) & check manuals for -o, -Xp,

Interpretations: 3, represents the assoc of a 1-unit

increase in X with a change in logodds of being in

cumulative cat. “s”

Ex: 3-cat PO: log{odds(Y>s)} = o, + XB;, s=1,2
logodds(Y>1) = oy + XBq4q

logodds(Y>2) = o, + XByy Relaxed
Assumption
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gologit impso weeksqrt treatment interact, cluster(id) robust
(Std. Err. adjusted for 437 clusters in id)
(Std. Err. adjusted for 437 clusters in id)
I Robust
impso | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
_____________ g
mleql |
weeksqrt | .2041182 .0937231 -3.46  0.001 .0829934 .5020189
treatment | .1793261 .1833936 -1.68 0.093 .0241621 1.330921
interact | 1.054759 .5020053 0.11 0.911 .4149823 2.680876
_____________ A ——————————————————————————————————————
mleq2 |
weeksqrt | .4847473 .0609446 -5.76 0.000 .3788772 .6202008
treatment | . 7877922 .2234486 -0.84 0.400 .4518327 1.373554
interact | .5892814 .0865812 -3.60 0.000 .4418333 .7859357
_____________ g
mleq3 |
weeksqrt | .66977 .069234 -3.88 0.000 -5469368 .8201896
treatment | 1.061012 .2399695 0.26 0.793 .6810892 1.652863
interact | .441081 .0588683 -6.13 0.000 -3395579 5729581
_consl | 5.986731 -9860904 6.07 0.000 4.05403 7.919433
_cons2 | 1.996487 .2504722 7.97 0.000 1.505571 2.487404
_cons3 | .30472 -1993504 1.%53 0.126 -.0859997 .6954397

Compare w/ P.O. model: ologit

ologit impso weeksqrt treatment interact,
or robust cluster(id)

Ordered logistic regression

Log pseudolikelihood = -1878.0969

weeksqrt
treatment
interact

.5847056
.9993959
.4719089

-3.807279
-1.760167
-.4221112

Number of obs = 1603

Wald chi2(3) = 440.17

Prob > chi2 = 0.0000

Pseudo R2 = 0.1177

(Std. Err. adjusted for 437 clusters in id)

Robust

Std. Err. z P>]z| [95% Conf. Interval]
.0591797 -5.30 0.000 .4794958 .7130004
.2042595 -0.00 0.998 .6695244 1.491793
.0568135 -6.24  0.000 .3727189 .5974961
-1956796 -4.190804  -3.423754
.1811041 -2.115125 -1.40521
-1795596 -.7740415 -.0701808
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Relaxing the PO assumption

m PO: log{odds(Y>s)} = o + X + u;

m Non-PO: log{odds(Y>s)} = o + XB, + U;

m s =1..(S-1) & check manuals for -o.g, -Xpq

m Interpretations: . represents the assoc of a 1-unit
increase in X with a change in logodds of being in
cumulative cat. “s” for a single patient.

m Ex: 3-cat PO: log{odds(Y>s)} = o, + Xp + u;, s=1,2

logodds(Y>1) = ai; + XB; + u;

logodds(Y>2) = o, + XB, + u; Strong
Assumption

Ran. Int. (SS) non-PO interpretations

log{odds(Y>s)} = o +B SWK+P,trt+Bgsswk*tri+ u;
log{odds(Y>1 | wk=0, trt)} = ot; + By, + y;
log{odds(Y>1 | wk=0, PI)} = o, + u,

exp(Bp)=??

log{odds(Y>2 | wk=0, trt)} = o, + B,,
log{odds(Y>2 | wk=0, PI)} = a,
exp(B,o)= ?7?

m Gllamm still running...




Schiz Summary

m Under a common trt effect, general 72%
decrease in cumulative odds risk per unit time
(sqrt week).

m Patient responses are highly variable, so the
marginal responses may not fit an individual’'s
response well.

m Could model this with MMM (probit) to handle
both estimation aspects

m Potentially less change over time in lower
categories

m Potentially stronger trt effects in upper
categories

Ordinal MLM notes

m PO models are basically logistic regressions
popular
strong parallel regression assumption
Can be relaxed
m Mixed PO have SS, not PA effects (from logit)
m Other models:
Ordinal Probit
Continuation ratio model
Multinomial logit model

m Additional REs (random slopes, etc.)
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From Caffo & Griswold TAS 2006:
Ordinal MMM with 2 REs

767 A5 ..60.2 |
oSS ,//’:’ !
i f S8/ YA AN S S

e

o /PR 86 17‘«r

' 24 |8 A3
L 242 el 109

-2 -1
Contour plot of the fitted bivariate distribution
along with cell counts and fitted cell counts

Overall Summary: MLMs

Powerful tools / dangerous black boxes

“Buyer Beware”
Model Assumptions: both fixed AND random (u;~N(0,t?))
Identifiability
Model Fit: Marginalize & Check whenever possible
Report Heterogeneity as well (& meaning)
MLMs require even more due-diligence than usual
Marginal Models (~GEE)
Nice PA interpretations, more robust

m RE models (~GLMM)
Nice MAR, flexible assoc, full likelihood

m MMM: best of both worlds
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